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 In this study, MoSe2/rGO nanocomposite modified screen printed 
graphite electrode (SPGE) was designed for acyclovir (ACV) 
determination. The electrochemical investigation and measurement of 
ACV were performed by applying some voltammetric techniques and 
chronoamperometry. After modification of SPGE, the enhancement of 
the voltammetric response and the reduction of overpotential of ACV 
confirmed the good electrocatalytic ability of MoSe2/rGO/SPGE sensor 
towards the ACV oxidation. The voltammetric method (differential pulse 
voltammetry (DPV)) was used to investigate the determination ability of 
MoSe2/rGO nanocomposite/SPGE towards ACV determination under 
the optimum parameters and conditions. The MoSe2/rGO/SPGE sensor 
indicated appreciable sensing ability towards ACV, with an optimal 
linear response from 0.03-190.0 µM and a limit of detection (LOD) of 
0.01 µM. More importantly, the practical applicability of the designed 
sensor was confirmed in the ACV quantification in ACV tablet and urine 
samples, showing its potential application for real sample analysis. K E Y W O R D S 
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Introduction 

In last years, the swift emergence of viral 

diseases has been recognized as a serious threat 

to both human and veterinary health [1]. More 

recently, the viral diseases surpassed other 

infectious diseases to become the leading cause 

of death worldwide. This evolution has made 

viral diseases a paramount concern for public 

health. Acyclovir (ACV) is known as a synthetic 

nucleoside analog of purine derived from 

guanine. However, it differs from guanine in that 

it lacks a 3'-hydroxyl on its side chain. It has been 

extensively utilized in the clinical treatment of 

various viral diseases, including Epstein-Barr 

virus, varicella-zoster virus (VZV), hepatitis B 

virus (HBV), and herpes simplex virus (HSV). 

This medication has demonstrated remarkable 

therapeutic benefits in treating viral diseases 

such as cold sores, encephalitis, infections of 

central nervous system, keratitis, and corneal 

blindness [2,3]. When present in high 

concentrations in the body, ACV can cause 

adverse effects such as nausea and diarrhea. In 

addition, high doses of this medication can 

potentially cause serious side effects related to 

the kidneys and low platelet counts [4,5]. 

Therefore, the necessity of using a powerful 

analytical tool with high selectivity and 

sensitivity, and quick response is clearly evident 

for ACV determination in pharmaceutical 

compounds and biological samples. So far, 

several analytical techniques have been reported 

for the ACV detection, including 

spectrophotometry [6], radioimmunoassay [7], 

capillary electrophoresis [8], and 

chromatography [9,10], and. Despite being well-

established and widely accepted for detecting 

ACV, these methods often encounter limitations 

such as expensive equipment, extensive sample 

preparation, the need for specialized expertise, 

and time-consuming procedures. These factors 

can render these methods unsuitable for routine 

analysis in clinical settings and can restrict their 

availability to healthcare professionals and 

patients. Due to their sensitivity, simplicity, rapid 

response and inexpensive instrumentation, 

electrochemical methods based on chemically 

modified electrodes (CMEs) present a promising 

alternative [11-21]. 

Research indicates that the screen-printing 

technology commonly employed in 

microelectronics holds significant value in 

producing electrodes for disposable 
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electrochemical (bio) sensors. Screen-printed 

electrodes (SPEs) offer a range of benefits such 

as simplified operation, adaptability, cost-

effectiveness, portability, reliability, reduced 

dimensions, and scalability for mass production 

[22,23]. Consequently, it finds extensive utility 

within the realm of electroanalytical chemistry. 

Furthermore, the implementation of an SPE 

eliminates the need for meticulous cleaning 

procedures that traditional electrodes, such as 

glassy carbon electrodes, require. This 

innovation addresses the limitations inherent in 

conventional electrode systems, which 

necessitate frequent recalibration, lack stability, 

and prove unsuitable for on-site analyses due to 

their lengthy completion times spanning several 

hours. Furthermore, traditional electrode 

systems mandate the expertise of skilled 

professionals due to their complex isolation and 

washing protocols. Consequently, the 

shortcomings associated with traditional 

electrode systems have rendered them less 

effective compared to the advantages offered by 

SPEs. Nanotechnology, as one of the top advances 

of recent decades, has rapidly become one of the 

most important research and application fields in 

various domains [24-29]. More importantly, 

nanotechnology has a huge potential in the 

design, fabrication, and development of novel 

and practical sensors [30-37]. With the 

development of the nanostructures application in 

electrochemical sensors, it is known that the use 

of nanostructures to modify the surface of the 

electrode leads to the improvement of the speed 

of the electron transfer process, reduction of 

overvoltage and increase of the efficiency of the 

electrode [38-43]. 

Recently, there has been significant attention in 

research towards molybdenum-based two-

dimensional transition metal dichalcogenides 

(2D nanomaterials) owing to their amazing 

physical and chemical attributes such as 

substantial surface area, heightened electronic 

conductivity, remarkable specific capacitance, 

their layered structure, inexpensive price, 

outstanding electrocatalytic activity, and good 

chemical stability [44,45]. 

Typically, chalcogenides like MoX2 (where, X = S 

and Se) are synthesized to exhibit a two-

dimensional layered configuration similar to 

graphite. The individual MoX2 layer comprises a 

covalently bonded arrangement of Mo elements 

with chalcogenide elements. These layers are 

held together through gentle interactions (Van 

der Waals). MoSe2 surpasses MoS2 in terms of 

electrical conductivity and electrocatalytic 

performance due to its elevated metallic 

attributes and the presence of actively catalytic 

unsaturated selenium edges [46-48]. 

Nonetheless, the inert nature of the exposed 

planes on MoSe2 nanosheets limits their 

reactivity, as the active sites crucial for catalysis 

are primarily concentrated along the unsaturated 

selenium edges. Therefore, due to the sparse 

distribution of these active edge sites, the overall 

electrocatalytic activity of MoSe2 remains 

unsatisfactory. To tackle these limitations, MoSe2 

has been employed in conjunction with highly 

conductive carbonaceous materials, resulting in 

an enhancement of both MoSe2's conductivity 

and electrocatalytic activity. Because of its 

exceptional capacity to enhance electron transfer 

and its extensive surface area, reduced graphene 

oxide (rGO) can be readily combined with two-

dimensional nanosheets like MoSe2 to create 

heterostructures [49,50]. 

Concerning the aforementioned factors, the 

present investigation introduces the utilization of 

a novel and disposable sensor for the detection of 

ACV. This sensor capitalizes on the enhancement 

of the SPGE surface through the incorporation of 

a MoSe2/rGO nanocomposite. Notably, the 

MoSe2/rGO nanocomposite exhibited good 

electrocatalytic performance towards the ACV 

determination. This was evidenced by its notably 

narrow LOD, impressive sensitivity, and minimal 

over-voltage requirements. The resultant sensor 

was effectively employed for the quantification of 

ACV in urine samples and ACV tablets. 
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Experimental 

Equipments and Reagents  

The PGSTAT 302N Autolab (Metrohm, the 

Netherlands) operated by GPES software and 

connected to personal PC was applied to perform 

all electrochemical experiments. The pH control 

of phosphate buffer solution (PBSs) was 

measured by using a Metrohm 713 pH meter. The 

analytical grade of reagents with high purity 

were used in the present work as provided from 

Merck and Sigma-Aldrich companies without any 

further processing. The synthesis and 

characterization of MoSe2/rGO nanocomposite 

has been given in our previously reported work 

[51]. Figure 1 displays its FE-SEM image. 

 

Figure 1: FE-SEM image of MoSe2/rGO nanocomposite 

Preparation of the MoSe2/rGO Nanocomposite 

Modified SPGE 

The procedure for SPGE modification is as follow: 

1.0 mg of MoSe2/rGO was initially subjected to 

ultrasonication for at least 20 min in 1 mL of 

solvent to prepare MoSe2/rGO suspension, and 

then MoSe2/rGO suspension (4.0 µL) was 

dropped carefully on the SPGE surface. After 

drying at room temperature, the 

MoSe2/rGO/SPGE sensor was prepared.  

The surface areas of unmodified SPGE and 

MoSe2/rGO/SPGE were calculated to determine 

the effect of modification process. Accordingly, 

the CVs at various scan rates were recorded for 

0.1 M KCl solution containing 1.0 mM 

K3[Fe(CN)6]. The Randles-Sevcik equation was 

used to calculate the surface areas. The 

MoSe2/rGO/SPGE demonstrated an effective 

surface area (0.113 cm2), which was 3.6 times 

greater than the surface area on unmodified 

electrode. 

Results and Discussion 

Investigating the Performance of the MoSe2/rGO 

on the ACV Determination 

The pH of buffer solution is a key parameter in 

electroanalysis of compounds. Therefore, the 

effect of pH in the present work was investigated 

in PBS (0.1 M) with various values of pH from 4.0 

to 9.0 containing 75.0 µM ACV at 

MoSe2/rGO/SPGE. From the voltammograms, the 

current responses of ACV enhanced with the 

increasing in pH value from 4.0 to 7.0, and then 

decreased at pH values higher than 7.0. 
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Therefore, the selected optimal buffer solution is 

PBS 0.1 M at pH 7.0 due to the highest peak 

current of ACV in this pH. The oxidation 

mechanism of ACV is presented in Scheme 1. 

 

Scheme 1: The oxidation mechanism of ACV 

To confirm the electrocatalytic response of 

prepared sensor (MoSe2/rGO/SPGE) towards the 

electrochemical reaction of ACV, the CV 

responses of 100.0 µM ACV in PBS (0.1 M-pH 7.0) 

were recorded at various electrodes (unmodified 

SPGE (Figure 2 (voltammogram a)) and 

MoSe2/rGO/SPGE (Figure 2 (voltammogram b)) 

at a scan rate of 50 mV.s-1. From the obtained 

voltammograms, it is obvious that the observed 

electrochemical process is an irreversible 

process, because only one well-defined oxidation 

peak was obtained due to the ACV presence. Also, 

a weak oxidation peak with low Ipa was 

observed for ACV at bare SPGE (voltammogram 

a). In contrast, the SPGE surface modified with a 

nanocomposite of MoSe2/rGO (voltammogram b) 

exhibited a notably amplified Ipa = 9.35 µA) and 

a shifted Epa toward negative values (Epa = 990 

mV) in the presence of ACV, compared to the 

bare SPGE. This prominent enhancement in the 

oxidation peak characteristics can be ascribed to 

the remarkable impacts of the MoSe2 and rGO 

sheets and their synergistic effects in the ACV 

oxidation. 

 

Figure 2: CVs of bare SPGE (a) and MoSe2/rGO/SPGE (b) in 0.1 M PBS at pH 7.0 containing 100.0 μM ACV at 50 

mV s-1 scan rate 
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Effect of Scan Rate 

In addition, the effect of scan rate (υ) on ACV 

oxidation was evaluated using LSV on the 

MoSe2/rGO/SPGE in PBS (0.1 M at pH 7.0) 

containing 90.0 µM ACV at various scan rates (10 

to 300 mV.s-1) (Figure 3). Figure 3 illustrates that 

the Ipa of ACV was increased with increasing of 

scan rates. Moreover, the data presented in Inset 

of Figure 3 shows a strong linear dependence 

between the Ipa and the υ1/2 within the range of 

10-300 mV.s-1 (Ipa (μA) = 1.6473υ1/2 (mV s-1)1/2 - 

2.2396 (R2 = 0.9991)), which suggests a 

diffusion-controlled process on the 

MoSe2/rGO/SPGE surface. 

 

Figure 3: LSVs of MoSe2/rGO/SPGE in 0.1 M PBS at pH 7.0 containing 90.0 μМ ACV at different scan rates ((a) 10, 

(b) 50, (c) 100, (d) 200, and (e) 300 mV s-1. Inset: the corresponding plot of Ipa (µA) vs. ν1/2 (mV s-1)1/2 

Chronoamperometric Measurements of ACV 

A chronoamperometric investigation was 

conducted to determine the diffusion coefficient 

(D) of ACV at the MoSe2/rGO/SPGE. The results 

of this investigation are depicted in Figure 4, 

which illustrates the obtained 

chronoamperograms for ACV at various 

concentrations in a pH 7.0 PBS. The reaction of 

an electroactive substance with a D is described 

by Cottrell's equation when the process is 

constrained by mass transport. In Figure 4A, a 

linear correlation is obtained between the 

current (I) and the square root of time (t1/2) for 

the oxidation of varying ACV concentrations. The 

slopes obtained from the linear fits were then 

correlated with the different ACV concentrations, 

as demonstrated in Figure 4B. By utilizing the 

plotted slope in conjunction with the Cottrell 

equation, the D of ACV was calculated to be 

2.1×10-5 cm²/s. 
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Figure 4: Chronoamperometric responses of MoSe2/rGO/SPGE in 0.1 M PBS at pH 7.0 containing ACV at 

different concentrations ((a 0.1), (b 0.3), (c 0.6), (d 0.8), and (e 1.0 mM) of ACV). Insets: corresponding plots of I 

(µA)-t-1/2 (s-1/2) curves from the chronoamperograms (A) and corresponding plots of obtained slopes-[ACV] 

Quantitative Analysis of ACV by DPV  

Figure 5 demonstrates the DPV responses for 

ACV at different concentrations in PBS (0.1 M-pH 

7.0) at the MoSe2/rGO/SPGE in the following 

conditions: step potential (0.01 V) and pulse 

amplitude (0.025 V). It was found that the Ipa of 

ACV increased proportionally along with 

increasing in ACV concentration over a range of 

0.03 µM to 190.0 µM. Likewise, by plotting the 

Ipa of ACV vs. its concentrations a good linearity 

was obtained (Ipa (μA) = 0.0853CACV (μM) + 

0.777 (R2 = 0.9995)) (Figure 5-Inset). The LOD 

value was obtained to be 0.01 µM. In addition, 

the performance of MoSe2/rGO/SPGE sensor was 

compared with some of reported electrochemical 

sensors for ACV determination (Table 1). 
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Figure 5: DPVs of MoSe2/rGO/SPGE in 0.1 M PBS at pH 7.0 containing various concentrations of ACV ((a) 0.03, 

(b) 0.3, (c) 2.5, (d) 5.0, (e) 15.0, (f) 45.0, (g) 75.0, (h) 100.0, (i) 150.0, and (j) 190.0 µM). Inset: The linear plot of 

Ipa (µA) vs. CACV (µM) 

Table 1: The performance of MoSe2/rGO/SPGE sensor in comparison with some of previous reported 

electrochemical sensors for ACV determination 

Electrochemical Sensor 
Electrochemical 

Method 
Linear Range LOD Ref. 

Ca-doped ZnO nanoparticles (NPs)/GCE 
Square wave 

voltammetry (SWV) 

8.0×10-8-

2.4×10-5 M 
6.18 nM [11] 

Reduced graphene oxide (rGO)-TiO2-Au 

nanocomposite/glassy carbon electrode (GCE) 

Linear sweep 

voltammetry (LSV) 
1-100 µM 0.3 µM [52] 

Magnetic CdO NPs/carbon paste electrode (CPE) DPV 1-100 µM 300 nM [53] 

Multiwalled carbon nanotube/iron-doped 

polypyrrole/GCE 
LSV 0.03-10.0 μM 10.0 nM [54] 

Fullerene-C60/GCE DPV 
9.0×10-8-

6.0×10-6 M 
14.8 nM [55] 

MoSe2/rGO/SPGE DPV 0.03-190.0 µM 0.01 µM 
This 

work 

 

Stability Studies of MoSe2/rGO/SPGE for ACV 

Determination 

The stability studies of MoSe2/rGO/SPGE sensor 

were done by recording the voltammetric 

response of this sensor towards 60.0 µM ACV 

over 12 days. The obtained results demonstrated 

that the voltammetric response retained 97.1% 

of its initial response after 12 days, indicating the 

good stability of the developed sensor.  
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Analytical Application of MoSe2/rGO/SPGE for 

Determination of ACV in Real Samples 

The urine samples and ACV tablets were used to 

investigate the practical applicability of the 

MoSe2/rGO/SPGE for ACV determination by DPV. 

The recovery studies were done by standard 

addition method to confirm the accuracy by 

spiking the ACV tablet and urine samples with 

ACV in various concentrations (Table 2). The 

recovery values varied from 96.7% to 104.2%. 

Also, the results showed a good precision as can 

be inferred from the low values of RSD (%) 

obtained (n = 5).  

Table 2: The determination results of ACV in urine samples and ACV tablets 

Real sample Added concentration in µM Detected concentration in µM Recovery (%) R.S.D. )%( 

ACV tablet 

0 3.2 - 2.4 

2.0 5.1 98.1 3.3 

4.0 7.5 104.2 1.7 

6.0 9.1 98.9 2.6 

8.0 11.3 100.9 2.1 

Urine 

0 - - - 

5.0 5.1 102.0 2.4 

7.0 6.9 98.6 3.0 

9.0 8.7 96.7 2.0 

11.0 11.1 100.9 2.7 

 

Conclusion 

In the presented study, a facile and novel 

MoSe2/rGO-modified SPGE was designed and 

applied for sensitive and accurate determination 

of ACV. With the synergistic effect from MoSe2 

and rGO sheets, the designed sensor exhibited 

good performance for oxidation of ACV by 

reducing the over-potential and enhancing the 

current response. In addition, the 

MoSe2/rGO/SPGE sensor exhibited analytical 

performances for determining ACV, including 

wide response range (0.03 µM to 190.0 µM), low 

LOD (0.01µM), and high sensitivity (0.0853 

µA.µM-1). Also, MoSe2/rGO/SPGE sensor 

demonstrated good stability for ACV 

determination. Finally, the designed sensor was 

successfully utilized for ACV determination in 

ACV tablet and urine samples, with high 

reliability and accuracy. 
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